Мощные GaN-усилители в корпусах QFN: Работа в непрерывном режиме

17 ноября 2017

 СВЧ-усилители на основе нитрида галлия(GaN) дают разработчикам возможность достигать высоких уровней мощности в компактных устройствах. Однако для этого необходимо обеспечить эффективный теплоотвод. Нужно также иметь в виду, что GaN-устройства в компактных корпусах(например, QFN), которые предназначались для использования в импульсном режиме, благодаря своим малым массе и габаритам широко востребованы в системах, работающих с непрерывными сигналами (CW). Это дополнительно повышает требования к охлаждению подобных приборов. На примере усилителя TGA2307-SM компании Qorvo рассмотрим, как обеспечить необходимый тепловой режим GaN-устройств.


 Рис.1. Разводка платы под TGA2307-SM

TGA2307-SM – усилитель мощности диапазона 5–6 ГГц с  выходной мощностью примерно 50 Вт, изготовленный по технологическому процессу QGaN25 компании Qorvo (0,25 мкм GaN HEMT). Устройство размещается в 40-выводном корпусе QFN размерами 6 × 6 мм. Разработанный для использования в системах с импульсными сигналами со скважностью 10 и длительностью импульса 100 мс усилитель рассеивает мощность 6–8 Вт. Достаточный при данных значениях мощности теплоотвод обеспечивается благодаря размещению на печатной плате с  заполненными медью переходными отверстия ми. Именно такое решение используется на  отладочной плате, поставляемой для TGA2307-SM (рис.1).
По мере уменьшения скважности (увеличения длительности импульса) рассеиваемая мощность повышается, достигая величин 60 Вт и более при непрерывном режиме работы. Как показывает опыт разработок, мощности порядка 10–15 Вт уже не удается рассеять указанным методом. Значительно бóльшую выделяемую мощность могут рассеять печатные платы с  теплопро- водящими медными площадками (copper coins) за счет меньшего теплового сопротивления между корпусомусилителя и теплоотводом (основанием платы).
 

Рис.2. Результат теплового моделирования при использовании различных плат

 
Для того чтобы оценить возможность использования TGA2307-SM в  непрерывном режиме, было смоделировано три варианта монтажа микросхемы на плату (рис.2, 3):
·         печатная плата толщиной 8 мил (0,203 мм) с переходными отверстиями, заполненными металлом, которая приклеена к теплоотводу эпоксидным клеем (вариант, использованный в отладочной плате для TGA2307-SM);
·         печатная плата толщиной 20 мил (0,508  мм) с медными площадками, приклеенная к теплоотводу эпоксидным клеем;
·         печатная плата толщиной 20 мил с медными площадками, припаянная к теплоотводу припоем SAC-305 (Sn96,5Ag3Cu0,5).
Как видно из рис.2, в первых двух вариантах темпера- тура канала GaN-транзистора превышает 325 °C даже при наличии медных площадок на печатной плате. Поскольку при температурах выше 325 °C теплопроводящие свойства многих материалов ухудшаются, а время наработки до отказа (Mean time to failure, MTTF) заметно уменьшается, работа при таких условиях не рекомендуется.


Рис.3. Схема системы, используемой для теплового моделирования TGA2307-SM

 
 
 
 
 
 
 
 
 
Необходимо отметить, что во  всех вариантах монтажа припой или эпоксидный клей должны обеспечивать надежный контакт без пустот на участках корпус микросхемы – печатная плата и печатная плата – теплоотвод. Это – трудная задача для прототипа усилительногоустройства, не говоря уже о серийном производстве.
Разработчик должен также иметь в виду, что в данной модели температура поверхности, расположенной на 0,25 дюйма (6,35 мм) ниже основания теплоотвода, предполагается постоянной и равной 85 °C (отладочная плата имеет отверстие под термопару в данном месте). Это подразумевает, что какие бы корпус и размер медных площадок ни выбрали, их комбинация должна обеспечивать передачу тепла при поддержании данной температуры нижней границы теплоотвода. Такой подход удобен для моделирования, так как позволяет при постоянных граничных условиях сравнивать различные тепловые модели микросхем и транзисторов. Однако он не применим к другим системам охлаждения, которые не обеспечивают подобный уровень теплоотвода.
Таким образом, непрерывный режим работы импульсного усилителя TGA2307-SM возможен при монтаже микросхемы на  печатную плату с  медными площад- ками при условии надежного контакта между корпусом усилителя, платой и теплоотводом. Необходим также системный подход к обеспечению требуемого отвода тепла для поддержания достаточно низких значений температуры нижней части теплоотвода. Разработчик должен оценить целесообразность использования конкретного устройства в данном режиме.
Тепловое моделирование, подобное рассмотренному выше, должно выполняться для любого GaN-усилителя высокой мощности в корпусе QFN или похожем для того, чтобы определить требования к системе теплоотвода, необходимой для обеспечения наилучших показателей работы при максимально длительном сроке службы устройства.
Литература
1.   1
CW Operation of QFN-Packaged Pulsed GaN Power Amplifi ers. – RF Globalnet. 31.05.2017.
2.   2
Chen Y., Wang S., He X., Silberschmidt V. V., Tan Z. Copper coin-embedded printed circuit board for heat dissipation: manufacture, thermal simulation and reliability // Circuit World. 2015. Vol. 41. № 2. P. 55–60.
3.   3
Cho S. H. Heat dissipation eff ect of Al plate embedded substrate in network system // Microelectronics Reliability. 2008. Vol. 48. № 10. P. 1696–1702.
4.   4
Jin F-L., Park S-J. Thermal properties of epoxy resin/fi ller hybrid composites // Polymer Degradation and Stability. 2012. Vol. 97. № 11. Р. 2148–2153.
Автор: Р.Ай - компания Qorvo, инженер.
Перевод: Г.В. Кон - Макро Групп, ведущий product-менеджер СВЧ-направления, George.Cohn@macrogroup.ru.
Источник: Макро Групп

Материалы по теме

Статья Микрочип из журнала "Электронные Компоненты 10: "Автономные периферийные устройства: малое потребление в реальном времени"

 

Оставить комментарий